多孔質炭素粉末含有ゴムシートの電波吸収に関する研究

C-2 Study on Radio Absorption of Rubber Sheets with Porous Carbon Powder

島田 隼佑'島 宏美'亀井 利久'

Syunsuke SHIMADA[†] Hiromi SHIMA[†] Toshihisa KAMEI[†]

* 防衛大学校 通信工学科

† Department of Communications Engineering, National Defense Academy

1. はじめに

近年、安全対策のため 76 GHz、60 GHz のミリ波帯を用 いた車々間レーダーがヨーロッパを中心に採用されている。 ここで課題となるのが送受信間での電波の回り込み対策で ある。アンテナ間だけではなく回路中や基板への電波の 回り込みを抑圧することは重要な課題である。これまで 76 GHz 帯での回り込み対策は、電波吸収体の厚さと充填率 の精度がクリティカルなゴム製品で量産されていたが、ミリ 波帯の電波吸収体を製造する際、充てんフィラーの均一 分散が不可欠であるため、製品ごとのばらつきが大きく量 産には向かないことが知られている。また吸収性能に着目 すると使用可能帯域が狭いものが多かった。これに代わる 電波吸収材として、ミリ波帯域においても広範囲をカバー する発泡型の電波吸収体は既に存在するが、これは電波 吸収体の厚みが厚い上、耐熱性も低く、実用には向かな い。そのため吸収体の厚みが薄くかつ耐熱性を持った新 たなミリ波帯広帯域電波吸収体の開発が期待されている。

本研究では、多孔質炭素粉体「フィトポーラス」の広帯域 電波吸収体としての可能性に着目し、その電波吸収特性 の評価を行ったので報告する。

2. 多孔質炭素粉末含有ゴムシートの電波吸収特性

薄くかつ耐熱性を持った広帯域特性を有するミリ波帯電 波吸収体を実現するために、100%植物原料由来の多孔 性炭素材料「フィトポーラス」に注目した。フィトポーラスと は、植物の非食部(農業残さ)の有効活用から開発された、 多孔質炭素材料であり、植物が持つ天然の多孔質構造中 にフェノール樹脂を含浸して高温焼成し、ガラス状炭素で 補強された高強度な多孔質炭素粉体である。この粉体を 機能性フィラーとしてゴムやプラスチックに配合し加圧成形 や射出成形後に、さらに焼成することで多孔質炭素板とし て使用が可能であることが報告されている[1]。この中空状 のカーボンをゴムシートに分散するとミリ波帯で広帯域に 電磁波を吸収する電波吸収材を実現することができる。

米のもみ殻を原料とした多孔質炭素粉体の配合率を 10 wt%、20 wt%とした厚さ 2 mm のゴムシート材について、ベ クトルネットワークアナライザーを用いた自由空間タイムドメ イン法により、電波吸収特性を評価した。

図1は米のもみ殻の多孔質炭素粉体を10及び20wt% 配合させたゴムシートの周波数75~110 GHz 帯における 反射減衰量の入射角度依存性である。配合率 20 wt%の ゴムシートでは大きな入射角度依存性はなく、平均して-10 dB 程度の反射減衰量が得られた。入射角度 60 度にお いて、最大の反射減衰量-13 dB が全帯域にわたって得 られた。一方、配合率 10 wt%のゴムシートでは反射減衰 量が入射角度に大きく依存していることがわかる。入射角 度 15 度のとき、95 GHz 付近に最大で-23 dB、入射角度 30 度のとき、102 GHz 付近に最大で-18 dB の吸収ピーク が得られた。いずれの入射角度においても反射減衰量が -10 dB 以下の帯域幅が 20 GHz 以上にわたっており、入 射角度 30 度のとき、-20 dB 以下の帯域幅が約 5 GHz 得 られることが確認された。

3. まとめ

米のもみ殻の多孔質炭素粉体を含むゴムシートの電波 吸収特性を評価した。配合率、入射角度、周波数帯により 吸収特性に大きな違いが見られ、ミリ波帯においては配合 率 10 wt%のゴムシートに対し、入射角度 15 度で電波を放 射すると、95 GHz を中心とした最大-23 dBの広帯域な吸 収ピークを示すことがわかった。今後の展開としては、多孔 質炭素粉体の配合率だけでなく、粉体の粒径やその分散 の様子が電波吸収特性に及ぼす影響を明らかにする必要 がある。

参考文献

[1] 飯塚博, ネットワークポリマー, vol. 31, no.5, pp.233-239 (2010).