講演番号:70 B-10

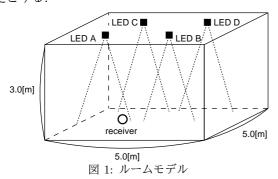
拡張プライム符号を用いる VN-CSK における 受信機位置測位に関する研究

A study on positioning system for VN-CSK with MPSC

大澤 圭佑 1 飯塚 暉1 羽渕 裕真1 小澤 佑介1 Hikari Iizuka Keisuke Osawa Hiromasa Habuchi Yusuke Kozawa

茨城大学工学部情報工学科 ¹

Department of Computer and Information Science, College of Engineering, Ibaraki University


まえがき

赤外線や可視光線を利用した照明光通信では、調光制 御を考慮した通信システムの構築が望まれる. 各照明か ら異なるデータを送信する機能と調光制御を併せ持つ. 拡張プライム符号 (MPSC) を用いる可変 N 並列符号多 値変調法 (VN-CSK) が提案されている [1].VN-CSK で は、照明位置と受信位置の関係を利用することにより性 能向上が期待できるが、これまでに検討されていない.

そこで本稿では、各照明毎に異なる MPSC を割り当 てる VN-CSK システムにおいて受信機位置推定を行 う.MPSC を用いることでどの照明データであるかを判 定可能であり送受信機間の距離も計測可能となる. その ため、受信機位置推定において照明機を衛星と捉えると 照明光 GPS としてコード測位が可能となる.

システム構成

図1,2に実行環境のルームモデルと受信機のシステム モデルを示す、壁からの反射光は考慮しない、送信機は4 つの LED 照明で、すべての LED 照明が同じ電力の可視 光を照射する. 受信機では4つの LED 照明のうち3つの LED 照明からのそれぞれの雑音を含んだ受信電力を計 測する. このとき MPSC を利用することで各 LED 照明 からの受信電力を別々に計測することが可能となる. そ の受信電力を利用し、受信機から各 LED 照明までの距 離を導出する. 得られた 3 つの LED 照明までの距離を 利用して、各 LED 照明の座標を中心とした 3 つの球面 の交点を求める連立方程式を解くことで受信機の座標を 導出する. この時, 受信機の z 座標は地面から 0.85[m] で 固定とする.

3 性能評価

LED 照明の配置が正則な場合 (Pattern1) と非正則な 場合 (Pattern2) で位置計測を行う.X 軸方向,Y 軸方向で 1[m] 間隔の36地点で受信光強度を計測し、Pattern2は 同一受信強度が存在しない場合である. LED 照明の配

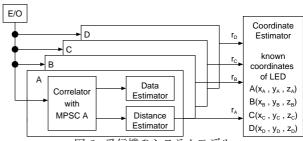


図 2: 受信機のシステムモデル

置を表1に示す. 誤差の平均と分散の一例を表2に示す. なお LED 照明の z 座標は 3.0 で固定とした. また、試行 回数は 36 地点で 100 回とする.1[μW] の受信光雑音が加 わるものとする. シミュレーションを行った結果、照明機 の配置により精度が異なることがわかった.

表 1. 各 LED 昭明の座標

XII G EED MINIO EIN					
	LED A	LED B	LED C	LED D	
Pattern1	(1.5, 1.5)	(1.5, 3.5)	(3.5, 1.5)	(3.5, 3.5)	
Pattern2	(1.5, 1.5)	(2.5, 0.5)	(4.5, 1.5)	(4.5, 3.5)	

表 2: 位置計測誤差の平均と分散

21					
	平均 [cm]	分散 [cm ²]			
Pattern1	0.1595	0.0281			
Pattern2	0.4677	0.3611			

むすび

受信光強度から受信機の位置計測を行うシステムを提 案した. また、LED 照明の配置が正則な場合と非正則な 場合において位置計測の精度を検証した.その結果,LED 照明配置に最適配置が存在することがわかった

今後の課題として,LED 照明の配置を変更することで 高精度な位置計測が可能となる最適な照明機配置を検討 する. また, 受信光強度分布による測位 (光フィンガープ リントと名付ける)と融合することを検討する.

謝辞

本研究の一部は、科学研究費補助金の援助により行わ れた.

参考文献

- [1] 大澤, 羽渕, 小澤,"VN-CSK 照明光通信における受信 機位置による BER 性能変化", 電子情報通信学会技 術研究報告 Vol.117 No.234,pp33-38
- [2] 中澤, 牧野, 西森, 若月, 小林, 駒形,"ナビゲーションを 目的とした可視光通信による屋内歩行者位置計測法", 電子情報通信学会論文誌 D Vol.J99-D No.2,pp165-177